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Land Surface Prediction: Accurate land model prediction is essential to enable data assimilation methods to 
propagate or extend scarce observations in time and space   Based on water and energy balance

Background: Background: Land Surface ModelingLand Surface Modeling

propagate or extend scarce observations in time and space.  Based on water and energy balance.

Input - Output = Storage Change
P + Gin –(Q + ET + Gout) = ΔS
Rn - G = Le + H

Dominant land surface horizontal processes: 
•Groundwater movement
•Horizontal temperature/water diffusion/advectionp
•Runoff

Assume 1-D Physics at mesoscales (greater than 100m)
•Gravity and gradient driven water & energy movement
•Horizontal processes very weakp y
•Observed horizontal correlations related to forcing
•Perturbation in state will not change neighbor

Ramifications of 1-D assumption:
•1-D (vertical) assimilation very cheap
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•No account for horizontal correlation in observation/model
•No “advection” of observation information horizontally

Land observations mostly at surface
•Surface skin temperature, soil moisture
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•Snow cover
•Want to retrieve full root-zone profile; longer memory states

Nonlinear Processes
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Land Surface ObservationLand Surface Observation

Forcing
•Precipitation

Fluxes
•Evapotranspiration

Off-line LDAS Validation

p
•Wind
•Humidity
•Radiation
•Air Temperature

•Sensible Heat Flux
•Radiation
•Runoff
•Drainage•Air Temperature Drainage

Calibration
Parameters

States
Assimilation

•Soil Properties
•Vegetation Properties
•Elevation & Topography
•Subgrid Variation

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing

•Soil Moisture
•Temperature
•Snow
•Carbon

•Subgrid Variation
•Catchment Delineation
•River Connectivity
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Carbon
•Nitrogen
•Biomass



Land Surface Data Assimilation SummaryLand Surface Data Assimilation Summary

Data Assimilation merges observations & model predictions to provide a superior state estimate.
R t l d h d l i  t t  t  b ti  (t t   il i t )  i t t d i t   Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated into a 

hydrologic model to improve prediction, produce research-quality data sets, and to enhance understanding.

Soil Moisture AssimilationSoil Moisture Assimilation Snow Cover AssimilationSnow Cover Assimilation Theory DevelopmentTheory Development
D t

Model In
tegration

Data
Insertion of Data 
into the Model

∂
∂

x
t dynamics physics x= + +Δ

Skin Temperature AssimilationSkin Temperature Assimilation Snow Water AssimilationSnow Water Assimilation

Assimilation with 
Bias Correction

SSM/I Snow ObservationSSM/I Snow Observation

Skin Temperature AssimilationSkin Temperature Assimilation Snow Water AssimilationSnow Water Assimilation

Observation

No Assimilation
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Assimilation
No Assimilation

Also: Also: Runoff, Evapotranspiration, groundwater (gravity), and 
Carbon Assimilation
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Soil Moisture Observation Error and Resolution Sensitivity:Soil Moisture Observation Error and Resolution Sensitivity:
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Soil Moisture Data Assimilation
State and bias filtering: which frequency is optimal?

State and bias filtering extracts more 
info from observations 

Ob

info from observations 

less frequent updating required

Obs
Only state 
estimation

State + bias 
estimation

Obs

Ens forecast
Every day (a)

Every 2 days (b)

Every 4 days (c)

estimation estimation

CLM2.0 + 

EnBKF

Every week (d)

Every 2 weeks (e)

Every month (f)

Every 2 months (g)

OPE3 data
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EnBKF Every 2 months (g)

De Lannoy, G.J.M., Houser, P.R., Pauwels, V.R.N., Verhoest, N.E.C. (2006). State and bias estimation for soil moisture profiles by an
ensemble Kalman filter: effect of assimilation depth and frequency. Water Resources Research, 43(6), W06401,
doi:10.1029/2006WR005100.



Soil Moisture Data Assimilation
Adaptive filtering: retrieval of off-diagonal error covar elements
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Training period Application period



Soil Moisture Data Assimilation
Adaptive filtering: result when assimilating only 1 profile

A i il i  l    Assimilation only at arrow 
location

EnKF: only effect at arrow 
location, other locations are 
ens mean integration ens mean integration 
without update (zero off-
block diagonal P-)

ADEnKF: effect of DA at 1 
location is spread over total 
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field
De Lannoy, G.J.M., Houser, P.R., Verhoest, N.E.C., Pauwels, V.R.N. (2008). Adaptive soil moisture profile filtering for horizontal information
propagation in the independent column-based CLM2.0, Journal of Hydrometeorology, under review.



AMSR-E & Model Soil Moisture Evaluation

Averaged soil moisture plot from 17 sites (SMEX03-Georgia) over AMSR-E 1/4 degree 

35

grid. Noah (10 cm and 5 cm layer SM), CLM (4.5 cm layer, layer 1+ layer 2), SCAN 
(just one station, 5 cm), AMSR-E (2 cm layer), SMEX03 (6 cm layer).
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Assimilation of AMSRAssimilation of AMSR--E Land Products into the NOAH LSME Land Products into the NOAH LSM

Noah Model (no assimilation) Unscaled AMSR-E Soil Moisture Unscaled AMSR-E SM Assimilation

Paul Houser, Yan Luo, Xiwu Zhan, Alok Sahoo, Kristi Arsenault, Brian Cosgrove

CDF  Matching Q d  Offi i l AMSR E il GOALGOAL I l t K l  Filt  t  i il t  l d I l t K l  Filt  t  i il t  l d CDF  Matching
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1.0 Quandary: Official AMSR-E soil 
moisture product has very low variability, 
wich produces an assimilated product 
with low variability

GOAL:GOAL: Implement Kalman Filter to assimilate land Implement Kalman Filter to assimilate land 
satellite data products into the Noah land surface satellite data products into the Noah land surface 
model installed in the Land Information System (LIS)model installed in the Land Information System (LIS)

PROGRESS:PROGRESS: Three data assimilation algorithms (DI, Three data assimilation algorithms (DI, 
EKF  EnKF) have been implemented in LIS and has EKF  EnKF) have been implemented in LIS and has 

Scaled AMSR-E Soil Moisture Scaled AMSR-E SM Assimilation
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CDF Matching: Scales AMSR-E to 
model climatology, erasing any real 
variability in AMSR-E

EKF, EnKF) have been implemented in LIS and has EKF, EnKF) have been implemented in LIS and has 
been tested with various soil moisture observationsbeen tested with various soil moisture observations

FUTURE:FUTURE:
••Expand validation of assimilation results.Expand validation of assimilation results.
Optimize ensemble perturbation proceduresOptimize ensemble perturbation procedures Scaled AMSR E Soil Moisture Scaled AMSR E SM Assimilation••Optimize ensemble perturbation proceduresOptimize ensemble perturbation procedures

••Finalize AMSRFinalize AMSR--E scaling philosophyE scaling philosophy
••Explore brightness temperature assimilation (CRTM)Explore brightness temperature assimilation (CRTM)
••Expand to snow cover assimilationExpand to snow cover assimilation
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Bias Correction Method: Dee and Silva (1998) & Dee and Todling (2000) 
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tunable bias correction parameters1,,0 ≤< αγμ
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EnKF data assimilation with model climatology ke
but to correct observation errorbut to correct observation error

AMSR EAMSR_E
Noah Forecast
Corrected AMSR_E
“Observation bias”
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Daily top layer soil 
moisture time series plots 

SM Time Series Plot
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Error due to Error due to Error due to 

SMMR Snow Retrieval Error & Assimilation Impact

signal saturation snowpack liquid water body 
contamination
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Dong et al., 2005, 2006



Progress:
S il i t  ki  t t  d  i il ti  h  b  d t t d

Land Surface Data Assimilation: Land Surface Data Assimilation: SummarySummary
•Soil moisture, skin temperature, and snow assimilation have been demonstrated.
•Evapotranspiration, runoff, groundwater (gravity), and carbon assimilation are underway

Lessons Learned:Lessons Learned:
•We need to pay attention to the consequences of assimilation, not just the optimum assimilation 
technique.  i.e. does the model do silly things as a result of assimilation, as in snow assimilation 
example. 
L d d l h i   b  bi d  l di  t  i t fl  i  t t t•Land model physics can be biased, leading to incorrect fluxes, given correct states.

•Most land observations are only available at the surface, meaning that biased differences in 
surface observations and predictions can be improperly propagated to depth.
•Assimilation does not always make everything in the model better.  In the case of skin temperature y y g p
assimilation into an uncoupled model, biased air temperatures caused unreasonable near surface 
gradients to occur using assimilation that lead to questionable surface fluxes.

N  F t  Di tiNear Future Directions:
•Methods to address simultaneous model and observation bias.
•New observations (SMOS, Aquarius, SMAP, etc.).
•Coupled Assimilation (to avoid uncoupled biases).
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Coupled Assimilation (to avoid uncoupled biases).
•Mass/Energy conserving data assimilation techniques?


