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1. Introduction 
 Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas 

between the atmosphere and ocean.  These exchange processes are critical to a broad range of 
research questions spanning length scales from meters to thousands of kilometers and time scales 
from hours to decades.  The estimation of surface turbulent fluxes from satellite is challenging 
and fraught with considerable errors. We are working to reduce these errors and to create high 
quality gridded products for studies of the energy and moisture budgets. We have made excellent 
progress in preliminary retrievals, and in understanding several causes for biases. We are to 
reduce these biases prior to producing the gridded flux product. 

Surface fluxes are defined as the rate per unit area at which something (e.g., energy or 
moisture) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes 
are called surface turbulent fluxes because the mixing and transport are due to turbulence. 
Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation. 
Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed 
are critical for the calculation of all turbulent surface fluxes. We utilize bulk algorithms to 
calculate the fluxes from satellite observations of winds, sea surface temperature, atmospheric 
temperature, and atmospheric humidity. Surface pressure is also needed to calculate the air 
density. Our early efforts assume global averaged sea level pressure. When we construct our 
gridding product, this assumption will be improved because the gridding technique (develop 
through separate funding for surface vector winds and fluxes from ship observations) uses vector 
and scalar winds observations to determine a pressure field. 

The bulk algorithms for sensible heat (H), evaporation (E), and latent heat (Q) are given 
below. The air density (ρ) is dependent on surface air pressure, air temperature (T10), and 
humidity (q10). 

   H  = −ρ Cp θ* |u*| ≈ ρ Cp CH (T10 − Ts) |(U10 − Us)|, (1) 

 E  = −ρ q* |u*| ≈ ρ CE (q10 − qs) |(U10 − Us)|, (2) 

   Q  = −ρ Lv q* |u*| ≈ Lv E, (3) 

The other key variable is the surface wind shear (U10 − Us), which is closely related to friction 
velocity (u*; the square root of the kinematic stress). The scaling terms θ* and q* are analogous 
to u∗, Cp is the specific heat of air, and Lv is the latent heat of vaporization. The transfer 
coefficients (CD, CH, CE) account for differences in scale and include variability in u* (and 



 

 

similar terms) due to atmospheric stratification and sea state that is not included in the air/sea 
differences. 

Sea surface temperatures are also sufficiently well observed for most turbulent surface flux 
applications (Donlon et al., 2007). In contrast, near-surface atmospheric humidity and 
temperature have historically been difficult to retrieve via remote sensing methods because of the 
much larger signal from the ocean surface. Sea surface temperature (SST), and atmospheric 
temperature and humidity have been retrieved using linear combinations of the observed 
radiances. One of the great difficulties of atmospheric temperature and humidity observations is 
they are retrieved with frequencies that are quite sensitive to liquid water (i.e., excessive cloud 
cover), resulting in a lack of data in many areas that have very active weather and large fluxes 
(see Ebsenson et al. (1993) for a description of problems with moisture retrievals). There have 
been considerable improvements (discussed below) in the last decade.  The great improvement 
for SST observations (Donlan et al. 2007) has been intercalibration of may SST sensors. New 
techniques for retrieving atmospheric temperature and humidity (Jackson et al. 2006, 2009; 
Roberts et al. 2010; section 3c) have lead to considerable improvements in accuracy over a wider 
range of conditions, and are used by use to calculate more accurate inputs to bulk algorithms. 

2. Historical Challenges and Recent Improvements  
 Historical challenges in observing air-sea fluxes include insufficient sampling, biases, 

large random errors in air temperature, and no accounting for how surface water waves modify 
fluxes. A lack of intercalibration has also been a tremendous problem, resulting in spurious 
trends and variability that have more to do with the observing system than any natural processes. 
Intercalibration of winds and sea surface temperatures has been greatly improved in recent years. 
Intercalibration for atmospheric temperature and humidity is just beginning. Errors related to 
surface pressure are very small in comparison to other problems; therefore, improved estimation 
of surface pressure has had a low priority. 

3.    Results 

 a. Example Surface Turbulent Fluxes 
Below are examples of latent and sensible heat fluxes from two strong storms (Fig. 1). 

These fluxes are calculated from the Roberts et al. (2010) retrievals of air temperature and 
humidity, diurnally varying SST (a product under development based on NASA support from a 
non-NEWS program), and winds from SSMI. A neural net technique was used to mimic the 
COARE3.0 bulk flux algorithm.  

One obvious problem with satellite retrieved fluxes is gaps in coverage due to excessive 
cloud cover in some regions. In the case of these storms (Fig. 1), areas of relatively strong fluxes 
are missed. We anticipate that changes in winds and SST will be much more important than 
changes in atmospheric temperature and moisture within these gaps. The GHRSST project is 
working on producing accurate SSTs. Winds must be interpolated with knowledge of the 
relevant physics, rather than simply statistics. We are completing our NASA OVWST based 
activities in that area. The wind, for the flux fields developed for NASA NEWS, will be used as 
test cases for the development of this wind product. It is anticipated that air temperature and 
humidity can be more easily extrapolated; however, this extrapolation will likely be the dominant 



 

 

source of error in these fluxes. Our efforts should remove a large fraction of the bias due to 
ignoring these storms. We will attempt to examine this bias. 

 b. Diurnal Cycle 
We have found that the use of diurnally varying sea surface temperatures removes a 

roughly 10Wm-2 monthly-averaged bias in regional latent heat fluxes. The region depends on the 
model used to determine latent heat fluxes and the model for diurnal warming; further work 
should greatly reduce the significance of these differences. 

 c. Observations for bulk parameterizations 
The bulk formulas (Eq 1-3) are typically tuned to earth relative wind speeds; however, 

satellite winds are tuned to equivalent neutral winds (Ross et al. 1985; Bourassa et al. 2010) 
which are an approximation for friction velocity. If these satellite winds are treated as earth 
relative winds, there are seasonal and regional biases (admittedly small compared to prior 
problems). However, these biases can easily be removed, and will be removed in our product. 

 

 

 
Figure 1:  Satellite-based estimates of the latent heat flux (left column) and sensible heat flux 
(right column) for an intense mid-latitude storm (top row) and Hurricane Ivan, 2004 (bottom 
row). The black line is the storm track. Missing values occur where there was too much 



 

 

precipitation, masking out much of the interesting area for hurricanes, but much less of a 
problem for fluxes behind mid-latitude storms. These fluxes were calculated as part of the 
development process for the SeaFlux gridded fluxes.  

The quality of our temperature and humidity retrievals are shown below (Fig. 2), with 
examples from the storms shown in Fig. 1. These images have some suggestion of problems 
associated with excessive atmospheric moisture, resulting in questionable retrievals. We are 
collaborating on the testing of the retrievals in comparison to surface truth from buoys are 
research vessels. For the vast majority of conditions, these retrievals are remarkably impressive, 
and should contribute to a great reduction in biases in heat fluxes and evaporation! 

Air/sea differences in air temperature and humidity are shown in Fig. 3. Preliminary 
evaluation by the SeaFlux developers is remarkably encouraging. The air/sea temperature 
differences associated with cold air outbreaks are well represented! Such outbreaks follow warm 
core seclusions (the high latitude example in the figures), and can be seen (Fig. 2) as the cold and 
dry air transport south of the storm track. The associated large air/sea temperature differences 
(Fig. 3) contribute to extremely large fluxes in the wake of these storms. 

 

  

                          
Figure 2. Validation of satellite retrievals of humidity at a height of 10 m above the water 
surface (top left) and air temperature at the same height (bottom left); and examples of 
humidity (middle column) and air temperature (right column) for the same cases as in Fig. 2.  

 

 



 

 

 

        
 

Figure 3. Wind speeds (left column), air/sea differences in humidity (middle column) and air/sea 
differences in air temperature (right column) for the same cases as in Fig. 2. The fluxes are 
proportional to these wind speeds and differences. The wind speeds are from Remote Sensing 
Systems v6 SSMI product. 

 

 d. Tuning of Bulk Algorithms 
 We have also improved the calibration of latent heat fluxes. We have found that noise in 

the observed stress, passed through several non-linear manipulations, contributes to roughly a 10 
Wm-2 bias in the tropical latent heat fluxes. The distribution of observation based estimated of 
roughness length was very well modeled by adding realistic noise to stresses based on the 
COARE3.0 model for wind derived stress (Griffin 2010). Our technique removes highly 
questionable observations, resulting in a data set that is better suited for tuning flux models. The 
biases associated with the original parameterization is clearly seen in Fig. 4. This bias is well 
within prior uncertainty in turning parameters. Small changes in these parameters can correct the 
biases (Fig. 5). 



 

 

 

Figure 4.  Scatter plots and box plots of the LHF values from the original parameterizations.  The 
data for the scatter plots is first plotted with the observed as the x-axis and modeled as the y-
axis (red).  The axes are then reversed and the data is plotted again (blue and black).  The box 
plots are created from these scatter plots.  The box plots represent the 10th, 25th, median, 75th, 
and 90th percentile.  The widths of the boxes correspond to the number of data points contained 
within.  The wider the box, the more data points are included.  The farther the box plots are 
from the 1:1 line, the more bias is present in the data.  Any slope that is seen in the data is 
indicative of large random errors in the value that is being binned or a non-constant systematic 
error. 

 

Figure 5.  Same as fig. 4, but with the modeled LHFs calculated from the parameterizations with 
the new changes applied to the z0q calculations.   

 



 

 

Summary 
We are improving estimates of surface turbulent fluxes of heat and moisture. 

Improvements include improved sampling, improved retrievals of inputs to bulk algorithms, 
improved treatment of satellite derived winds, and improved parameterization in the bulk 
algorithms. 
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